When skeletons are geared for speed: the morphology, biomechanics, and energetics of rapid animal motion.

نویسنده

  • Matthew J McHenry
چکیده

A skeleton amplifies the minute contractions of muscles to animate the body of an animal. The degree that a muscular contraction displaces an appendage is determined by the gearing provided by the joints of a skeleton. Species that move rapidly commonly possess joints with relatively high gears that produce a large output displacement. However, the speed of an appendage can depend on dynamics that obscure how this motion is influenced by the skeleton. The aim of this review is to resolve mechanical principles that govern the relationship between the gearing and speed of skeletal joints. Forward dynamic models of three rapid force-transmission systems were examined with simulations that varied the gearing of a joint. The leg of a locust, the raptorial appendage of a mantis shrimp, and the jaw of a toad are all driven by the conversion of stored elastic energy into kinetic energy. A locust achieves this conversion with high efficiency when it kicks and thereby applies nearly all stored energy into fast movement. This conversion is unaffected by differences in the leverage of the knee joint, as demonstrated by a maximum kicking speed that was found to be independent of gearing. In contrast, the mantis shrimp creates drag as it strikes toward a prey and thereby loses energy. As a consequence, high gears displace the raptorial appendage relatively far and yield slower motion than do low gears. The muscle that opens a toad's jaw also dissipates energy during ballistic capture of prey. This loss of energy is reduced when jaw opening occurs from the slower muscle contraction produced by a high gear within the jaw. Therefore, the speed of these lever systems is dictated by how gearing affects the efficiency of the conversion of potential energy into kinetic energy. In this way, the energetics of force transmission mediate the relationship between the gearing of a skeletal joint and the maximum speed of its motion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of increasing running speed on three-dimensional changes of lower limb joint angles in open motor chain and swing phase

Objective Running is known as one of the most popular sports for which there is no time and space limit. Recently, due to lifestyle changes, the use of treadmills for walking and running has increased. However, the biomechanical differences in coordination between running on a treadmill at different speeds have not been sufficiently addressed. The aim of this study was to investigate the effect...

متن کامل

Rotor Design of IPMSM Traction Motor Based on Multi- Objective Optimization using BFGS Method and Train Motion Equations

In this paper a multiobjective optimal design method of interior permanent magnet synchronous motor ( IPMSM) for traction applications so as to maximize average torque and to minimize torque ripple has been presented. Based on train motion equations and physical properties of train, desired specifications such as steady state speed, rated output power, acceleration time and rated speed of tract...

متن کامل

The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles.

Although most of the literature on locomotion energetics and biomechanics is about constant-speed experiments, humans and animals tend to move at variable speeds in their daily life. This study addresses the following questions: 1) how much extra metabolic energy is associated with traveling a unit distance by adopting acceleration/deceleration cycles in walking and running, with respect to con...

متن کامل

Calculation for Energy of (111) Surfaces of Palladium in Tight Binding Model

In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...

متن کامل

Effect of Step Length and Step Period on Walking Speed and Energy Consumption: a Parameter Study

Stability and performance are two main issues in motion of bipeds. To ensure stability of motion, a biped needs to follow specific pattern to comply with a stability criterion such as zero moment point. However, there are infinity many patterns of motion which ensure stability, so one might think of achieving better performance by choosing proper parameters of motion. Step length and step perio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Integrative and comparative biology

دوره 52 5  شماره 

صفحات  -

تاریخ انتشار 2012